Assessing the suitability of fractional polynomial methods in

health services research

A perspective on the categorisation epidemic

ABSTRACT

Objective: To show how fractional polynomial methods can usefully replace the

practice of categorising data in epidemiology and health services research.

Methods: A health service setting is used to illustrate a structured and transparent

way of representing non-linear data without arbitrary grouping.

Results: When age is a regressor its effects on an outcome will be interpreted
differently depending upon the placing of cutpoints or the use of a polynomial

transformation.

Conclusions: Although common practice categorisation comes at a cost. Information
is lost, accuracy and statistical power reduced, leading to spurious statistical
interpretation of the data. The fractional polynomial method is widely supported by

statistical software programs, and deserves greater attention and use.



INTRODUCTION

In health services research continuous variables such as, for example, age, body mass
index or blood pressure, are commonly described and analysed in categories or bins,
with cutpoints at the boundaries. Categories are routinely used in regression models
where they are widely perceived to simplify the statistical analysis [1]. An obvious
benefit is ease of interpretation in that the effect of each category within a variable x

can be expressed relative to a reference category.

Categorisation has the perceived advantage of achieving robust results when tests of
linearity between the continuous covariate and the outcome are not met. However,
the stepped function associated with categories is often a poor approximation of a
continuous data distribution and the resulting loss of efficiency can be severe [2-6].
Unless the mean of the data within each category corresponds with the mean of that

bin’s cutpoints, the binned representation will be in error [7-9].

Percentiles are often used to split the data into equal-sized groups, but they do not
always represent the data accurately. For example, when the distribution is heavily
skewed, percentiles may represent a disproportionate spread of values [5, 10, 11].
These problems also arise when the median is used as a cutpoint to dichotomise

continuous data [12].



Compared with a model that retains a continuous scale of measurement, the
grouping of data reduces effect size and statistical power. While this situation can be
improved by investigators choosing cutpoints that exhibit “convincing” effects, the
practice of setting so-called “optimal” cutpoints in order to show statistical

significance is inconsistent with best practice research [5].

While the aim of a regression analysis is to determine broad associations between
independent and dependent variables, at the detailed level, the binning of
continuous predictors implies that observations close to but on opposite sides of each
cutpoint, are somehow different. For example, age cutpoints are often set at five or
ten-year intervals when there is no reason to expect that a step-change occurs at these

cutpoints.

Discrete representation of continuous data at some level is inevitable. However it is
important that options to maximise data precision and minimise the likelihood of
errors are selected at the survey design stage. For example, if a questionnaire
requires respondents to select from pre-set categories that refer to continuous
measures such as age, height, weight, annual income etc, not only is precision lost,

but the possibility of misclassification error is increased [9].

There are of course many areas in which data cannot be easily described on a
continuous scale and a categorical scale is apposite. For example, validated
psychometric instruments require responses within categories, and survey answers

are often best interpreted through frequency counts of binned data. While categories
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can be a sensible and practical alternative in some instances, this paper argues
against the unnecessary use of categories and shows how, using familiar statistical
software, the regression of continuous data using fractional polynomials improves

accuracy and precision.

The epidemiology literature includes some published studies that use fractional
polynomials, although they are the exception rather than the rule [9, 13-17]. Many
researchers and practitioners are unaware of their value and ease of application
believing that polynomials are mathematically complex and impractical. While the
examples discussed here are straightforward, more complex applications can be
found in the statistical and epidemiological literature [2, 3, 5, 9]. The aim of this
paper is to show how fractional polynomial methods can usefully replace the

practice of categorising data in epidemiology and health services research.

METHODS

The examples given here refer to a cohort study that examined equity and access in
an Australian hospital outpatient cardiac rehabilitation (CR) program [17-19]. The
population comprised only those who were eligible (by hospital discharge diagnosis)
for invitation to the program. Of interest to managers was the extent to which
patients” age was a predictor of invitation. Logistic regression was used to analyse
the statistical association between age (in years) and the binary outcome, “invitation”

[19].



Polynomials

A general polynomial is a function of the form: y=a,+ax+a,x* +---a x". For

regression purposes, Royston and Altman [11] proposed a constrained generalization
which they called “fractional polynomials”. Fractional polynomials take the form:

y=2a,+a,x™ +a,x” +---a,x™ The power p is chosen from a fixed set of possibilities

(-2;-1;-0.5; 0; 0.5; 1; 2 or 3) representative of a number of different curve shapes. This
set of possibilities is considered adequate because higher order polynomials can

represent the data poorly [5].

Royston and Altman’s algorithm [11] determines the fractional polynomial that
describes the best-fit regression relationship between the predictor and the outcome.
In practice, the algorithm selects first or second-degree fractional polynomials. First-
degree fractional polynomials (FP1) involve a single term (regressor) raised to a
power selected from either -2, -1, -0.5, 0, 0.5, 1, or 2. Second-degree fractional
polynomials (FP2) occur when there are two terms for the regressors with different

powers. The latter produce a wider variety of curve shapes [5].

For explanatory purposes this paper uses a first-degree polynomial y = 5, + 5, x°
where p may be an integer or “fractional”. Summary statistics are used to describe

how well different models fit the data. Model deviances, which are the difference
between data points and model predictors, are used to estimate goodness of fit when

a pair of models are compared. The method uses a stepwise process, which looks at



differences in statistical deviances when each model is compared with a linear model
(i.e. with exponent of the regressor = 1) [5]. The maximum deviance difference is
distributed approximately as x* with 1 degree of freedom. The significance of the
deviance statistic is tested at a given probability. If, for example, the p-value is < 0.05,
the hypothesis that the model is linear is rejected at 5% level of significance and the
test is repeated. Where the significance of the deviation difference is not statistically
significant, the simpler model is usually preferred. These tests apply to both

univariable and multivariable models [20, 21].

Functions using the algorithm are available in SAS, Stata and R. This paper used
Stata Version 9.0 (Stata Corp, College Station, Texas). Tests of statistical significance

were at 5%.

RESULTS

Age was the regressor and invitation the outcome. Ten-year categories are common
practice in epidemiological studies, but five-year categories (higher resolution) are

also used in this example.

Table 1 includes estimates of odds ratios (with 95% confidence intervals) resulting
from the logistic regression of age, in five-year categories, with the binary outcome
“invitation”. The odds of being invited to CR decreased with age. For patients aged
>=55 & <60 years, the odds of being invited to CR were not statistically different from

the reference group of patients aged less than 55 years. (The confidence interval



includes 1). Odds ratios were statistically significant in all other age categories. In
Table 2 the same analysis is shown when age is categorised in ten-year groups. This
result shows a statistically significant association between age and invitation in each
age group, but we know from Table 1 that this is not true for 55 to 60 years. At the
very best, these categorical estimates offer an approximation of the relationship

between age and invitation.

The analysis is repeated using the fractional polynomial algorithm that finds the best
fit relationship between age and invitation. The algorithm tested the linear, the FP1
and the FP2 models. The first test, between the linear and FPP1 models, resulted in a
deviance difference of 16.930. A statistically significant relationship (p <0.001) was
evidence of non-linearity. In the second test, which compared FP1 and FP2 models,
the deviance difference was 3.586. This relationship was not statistically significant (p
>0.05) and the FP1 model was preferred to the more complex FP2 model. In
conjunction with finding an optimal curve shape based on a minimum deviance
difference, Stata optimised a transformation of age such that age = x3 -302.81 where x

= age in years/10.

Scatter plots can inform data interpretation. Although it is common to assume that
binary data are not easy to interpret in this way, this need not be the case. Scatter
plots are important visual tools. They should be routinely used to qualitatively assess
data distributions in health services research. In Figure 1, the data points are

“jittered”; i.e. randomly nudged vertically to make the density clearer. This scatter



(or jitter plot) shows that the number of patients invited to attend CR initially
increased with age and then fell with increasing age. By comparing the density of the
jitter plots one can estimate roughly whether more patients in the age band of
interest were invited or not invited to CR. For older patients (>70years) the scatter is
relatively denser in the not invited band and the reverse is true for younger patients.
Although scatter plots are not normally used in health services research when an
outcome variable is binary, they can be useful visual tools for managers and other

decision-makers. (R software was used for Figure 1).

Figure 2 includes the observed data points (not jittered this time) and shows a curve
of the predicted probability of invitation by age (with 95% confidence limits) from
the best fit polynomial model. Compared with Tables 1 and 2, this presentation
allows a more accurate interpretation of the marginal change in the probability of

invitation for increments of age.

The practical importance of results such as shown here would obviously depend
upon the focus of the study. For example, if the purpose was to inform managers
about patterns of age discrimination in their program, the polynomial shows exactly
where this occurs. What is important is that this approach allows accurate
interpretation of the relationship for all possible values of the continuous predictor
variable. While the example here is univariate, the same procedures apply when

there are multiple predictors.



In the example given investigators may also be interested in whether there is an
interaction between age and sex. When age is categorised, using either five or ten-
year groups, the interaction is not interpreted as statistically significant (p > 0.05).
However when age is transformed using the fractional polynomial algorithm, the
age*sex interaction is statistically significant (?=8.50, df=2, p=0.0143). Figures 3, 4 and
5 show predicted probabilities of invitation by age for males and females separately
and together. Until age 60, older women were more likely to be invited than younger
women, but women over 60 were less likely to be invited. Older men were less likely
to be invited than younger men, and more likely to be invited than women. The
age*sex interaction is significant above age 65 years (see divergent confidence
intervals). The use of curves improves interpretation of the interaction between

covariates.

DISCUSSION

In the health services research and across the social sciences, continuously measured
variables are commonly grouped into categories. However, the simplicity achieved

through the categorisation of continuous data is at a cost [9].

Cutpoints are usually based on largely untested assumptions. For any given area of
research interest, there is typically a wide variation in cutpoints reported in the
literature. Although a common practice has been to base cutpoints on previous
studies, this can lead to incompatible and possibly biased results. The categorisation

of data involves decisions regarding cutpoints the positioning of which influences



estimates of effect size and statistical significance [22]. Additionally, when
investigators stratify to control for confounding or to analyse interactions, the choice

of categories can impact upon interpretation of the data [3].

Categories are often imposed at the data collection stage, but this can impede
accurate interpretation of the distribution of values. While there are practical
advantages in collecting data in pre-defined categories, it is important to

acknowledge that this practice can compromise the results [23].

A well fitting model is not the same as a correct model. The categorisation of
continuous variables can suggest that the model is correct in the central range of the
data, but categories may not accurately represent the data for all possible values.
Additionally, where distributions are skewed, or where values are under-
represented or absent from the observed data, the validity of the study can be
compromised. This paper uses simple examples, with graphs of curved relationships,
to show the advantages of the fractional polynomial method for health services

researchers when compared with the more usual practice of categorisation.

Fractional polynomials do not introduce investigator bias and they give interpretable
curves. Although fractional polynomials can appear mathematically and
computationally complex, the algorithm is performed efficiently by a number of
accessible statistical software packages [5]. The resulting curves can show the best fit
relationships for the observed data for given statistical confidence. This can provide

insights not evident when data are binned.
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This paper did not discuss the use of spline regression and generalised additive
models (GAMs) for describing and fitting continuous covariates because these

methods have been extensively documented in statistical texts and other publications

[24, 25].

While polynomial methods have clear advantages, there is also a danger that the
curved relationships will be “over interpreted by creative investigators”. [23]
Fractional polynomials can lack flexibility and lead to a poor fit of the data when, for
example, the predictor variable has extreme values. Spline and kernel methods can
be used to overcome such problems [5]. It is also important to keep in mind that
evidence of non-linearity may result from the study design and implementation
processes. Ultimately the methods chosen should supply a model that most

adequately and suitably describes the data and addresses the study objectives.

CONCLUSIONS

The categorisation of continuous variables in regression models can be improved by
fitting fractional polynomials to make use of information that is lost when cutpoints
are introduced. These methods allow a fuller representation of non-linear
relationships between predictor and outcome variables, and avoid the many
statistical compromises that are made when data are arbitrarily aggregated and
grouped. Ultimately the strength of any statistical method rests upon valid and

accurate representation of data.
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